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Motivation: direct detection of dark matter
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Models and basic constraints

Models:
» Well-tempered bino-Higgsino in MSSM N> =0
» Singlino-Higgsino in NMSSM Nii, Nip =0
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Models and basic constraints

Models:
» Well-tempered bino-Higgsino in MSSM N> =0
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S| blind spots possible
SD blind spots only for tg 3 = 1 or pure states
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Well-tempered bino-Higgsino in MSSM — heavy H
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Well-tempered bino-Higgsino in MSSM — light H
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Singlino-Higgsino in NMSSM
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Considered cases:
1. Only h exchange

> no mixing among scalars
» with scalar mixing

2. h and H exchange

> no mixing with s

» mixing with s, ms > my,
3. h and s exchange

> leading effect from H
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Singlino-Higgsino in NMSSM
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+A\AH, Hd5+3A <KS3+ miH, Hd+ m 252 4 ¢S+ h.c.

Considered cases:

1. Only h exchange in this talk
> no mixing among scalars 'ZX sin26 =0 (MSSM-like)
» with scalar mixing

2. h and H exchange )
» no mixing with s =X —sin23 = gT (%ﬁ) (MSSM-like)
> mixing with s, ms > mh

3. h and s exchange in this talk
> leading effect from H
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General NMSSM — only h exchange

Two generic mechanisms:

> resonance with Z9 boson (m,, ~ 45 GeV):
2
03 \* m} |[4m} 72 r2
Q#zOJ(z 2) mﬂ X142 ) 42
Ni3 — Ni, ) 4ms ms 4 mz

» annihilation into tt (m, 2 170 GeV):
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General NMSSM — only h exchange

Resonance with Z° Annihilation into tt
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General NMSSM — only h exchange

Resonance with Z° Annihilation into tt
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General NMSSM — h and s exchange

» Let us introduce:

9/12



General NMSSM — h and s exchange

» Let us introduce:

» Blind spot condition:
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General NMSSM — h and s exchange

» Let us introduce:

» Blind spot condition:

my v+ As KZ(M) <mx>2
M ginogae T2 BB (M
1 sin2f3 1—~vAs A \ v I

» Conclusions:

» because mg < my, the RHS can be one order of magnitude
larger as compared to the case of only h exchange

» in general NMSSM we can have Qh? =~ 0.12 and other
experimental boundsA fulfilled even for A i ~ 4 GeV, where
¥~ VAmix, My = Mpp + Apix.
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Z3-NMSSM — only h exchange (heavy singlet)
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Z3-NMSSM — h and s exchange (light singlet)
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Conclusions

» We derived current constraints and prospects for SD direct
detection for Sl blind spots for bino-Higgsino LSP in MSSM
and for singlino-Higgsino LSP in NMSSM.

» For bino-Higgsino, if H is decoupled, current DD limits set a
lower bound m; = 25 TeV. For H ~ 400 GeV light stops are
possible and this scenario will be tested in near future.

» For singlino-Higgsino the allowed parameter space is still
large. If my, ms > my, the allowed mass regions are
mpsp ~ 41 — 46 and 300 — 800 GeV and will be almost
entirely probed by XENON1T.

» In Z3-NMSSM additional annihilation channels and resonanse

with a relax the SD bounds. In particular, mygp = 400 GeV
may not be explored by XENON1T.

In the above scenarios, future SD limits will play a crucial role
in probing the parameter space.
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Backup slides: Higgs sector

» Convenient basis (H = OgH):

h cos@ sing 0 Hy
H|=]sin3 —cosB 0 H,
5 0 0 1 S

» Mass eigenstates:

Explicitly:



Backup slides: Higgs sector

» Diagonalization (A = A, + (9%f)):

%(I\/I% — \2v?)sin4g
I\/ll,g_l§ = AvAcos 23

2 .
M;, = Av(2p — Nsin2[3)

2 _
M: e =

Diagonal elements, M%i), M%—/H' M§2§, are more complicated.
We trade them for physical scalar masses (my,, ms, mpy).

» For a given mp o 125 GeV, ms, my, p, A, \, tg 3 we can find
numerically Sj;.
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Backup slides: XENON1T — May 2017
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